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Abstract. Recently we have used a cellular automata model which describes the dynamics of a multi-
connected network to reproduce the refractory behavior and aging effects obtained in immunization ex-
periments performed with mice when subjected to multiple perturbations. In this paper we investigate the
similarities between the aging dynamics observed in this multi-connected network and the one observed in
glassy systems, by using the usual tools applied to analyze the latter. An interesting feature we show here, is
that the model reproduces the biological aspects observed in the experiments during the long transient time
it takes to reach the stationary state. Depending on the initial conditions, and without any perturbation,
the system may reach one of a family of long-period attractors. The perturbations may drive the system
from its natural attractor to other attractors of the same family. We discuss the different roles played by
the small random perturbations (“noise”) and by the large periodic perturbations (“immunizations”).

PACS. 87.18.Hf Spatiotemporal pattern formation in cellular populations – 87.10.+e General theory
and mathematical aspects – 61.43.Fs Glasses

1 Introduction

In this paper we discuss a model for the evolution of the
immune repertoire of B cells, which are responsible for
the humoral immune responses. B cells belong to one of
the main classes of white blood cells: the lymphocytes.
These cells carry on their surface the order of 105 molec-
ular receptors (proteins) and once activated they produce
antibodies, which are copies of their molecular receptor.
During the life time of an individual the immune system
is able to produce the order of 1011 different antibodies
or different populations of B cells. The antigen (virus,
bacteria, poison, cellular residue, etc.) is not recognized
as a whole but by its epitopes, which are patches on its
structure that may be recognized by specific sites of the
antibody molecules. By pattern recognition different anti-
bodies will mark the epitopes of a given antigen, therefore
forming a complex that will be eliminated by macrophages
(another class of white blood cells) [1,2].

According to clonal selection theory [1,2], elements
that challenge the immune system will determine the pop-
ulations (clones) of B cells that will proliferate: those pop-
ulations will produce antibodies which will be able to
recognize different epitopes of the specific antigen. The
immune network theory [2,3], however, is based on the fact

a e-mail: mcopelli@df.ufpe.br
b Research Associate of the Abdus Salam International Cen-

ter for Theoretical Physics, Strada Costiera 11, Trieste, Italy

that the antibodies (and molecular receptors) are able to
recognize and to be recognized, and therefore during the
immune response there are different types of interaction:
antigen-antibodies and antibodies-B cells. In other words,
when a given population of B cells is activated by the
presence of a given antigen the produced antibodies will
not only mark the specific antigens but also activate new
B cell populations with complementary molecular recep-
tors, which in turn will recognize them. The increase on
the concentration of these complementary populations, on
their turn, will maintain the proliferation of the antigen
recognizing population, installing a feedback mechanism
that will keep several populations activated. This kind of
dynamics will generate a functional multi-connected net-
work among different populations of B cells that will be
dynamically regulated by mechanisms of activation and
suppression. The network will then play an important role
on the regulation of the immune responses. Although the
immune network theory is part of the current immunolog-
ical thinking, there are only few experiments supporting
the interaction among clones with complementary recep-
tors and the existence of such a network [4,5]. According
to these experimental findings, if the network exists only
10 − 20% of the populations will belong to it, the rest of
the immunocompetent populations remaining at rest.

Recently we have successfully used a mathematical
model [6–8,16] (inspired in a previous one proposed by
de Boer et al. [17]) which takes into account the main
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features of Jerne’s immune network theory, to simulate
experiments on immunization and aging performed with
mice [9] that could not be explained by the clonal selec-
tion theory. The simulations allowed to interpret the ex-
perimental results from the point of view of the immune
network theory.

The model allows to follow the evolution of the con-
centrations of the different populations of B cells in dis-
crete shape space, a formalism which maps all possible
molecular receptors of a given organism into points of
a d-dimensional space. To each point (receptor) we as-
sociate a clone that corresponds to the population of B
cells and antibodies characterized by this molecular re-
ceptor. The concentration of each clone will be described
by a three-state automaton representing low, medium and
high concentrations, and the interaction among different
clones is based on complementarity. As far as we know,
the model [6,7,16,17,19] corresponds to the first success-
ful attempt in describing the dynamics of the immune
network as proposed by Jerne [3] and recently it could
be used to reproduce experimental results performed with
mice [9]. Besides the biological implications of the results
obtained in reference [9], the dynamical behavior exhib-
ited by this model in the biologically relevant parame-
ter region is quite interesting by itself and should be bet-
ter investigated. This region has been shown [6] to exist
for dimensions d ≥ 2 and comprises a broad stripe near
the transition between stable and chaotic behaviors, in
which the model describes a multi-connected functional
network [6,7]. In this region we found the majority of the
populations in the resting state (low concentration) while
the activated ones may reach 10 − 20% of the total num-
ber of populations. The activated populations are aggre-
gated in clusters of different sizes, which fuse and split as
time passes following an aggregation and disaggregation
dynamics. Therefore the largest cluster at each time step
is found in a different region [7].

In the experiments described in reference [9], 6 mice
of the same linage are subjected to the immunization pro-
tocol as follows: the researchers inject ova by means of
an intra-venal injection, wait for 14 days and measure the
number of specific antibodies. Then they inject again the
same amount of antigen, wait for 7 days and measure the
amount of antibodies, and continue by repeating the same
protocol every 7 days. In order to simulate the immuniza-
tion protocol, the cellular automaton (CA) is subjected
to specific perturbations by flipping chosen resting popu-
lations (low concentration) to their activated state (high
concentration). Depending on the perturbation (damage)
size, it may disappear after a few time steps or part of
the damage (activated populations) may be incorporated
to the network. In other words, the memory about the
perturbations is due to the ability of the system to adapt
(plasticity) and incorporate information about them. We
have used two types of perturbations: random small ones,
which correspond to the noise that mice are subjected to
during the experiment, caused by the environment, and
periodic large ones that will simulate the immunization
protocol of multiple antigen perturbations under the same

conditions [9]. After few presentations there is a saturation
of the response of the system to the perturbation. During
this process, the system incorporates new information and
some of the previous information is lost, keeping the num-
ber of activated sites in the network almost unchanged.
This kind of behavior was also observed experimentally
in mice [10], where saturation is related to a refractory
behavior of the immune system.

We have also observed aging effects on the dynamics of
this system [9]. An older system is more rigid: the network
loses plasticity to incorporate new information [9,11,12].
A recent study [13] has shown that the distribution of
cluster sizes during the time evolution of the system has a
characteristic cluster size (exponential behavior), but the
distribution of persistence times (the period during which
a given population remains activated and belongs to the
network) exhibits a power law behavior. While the exis-
tence of a characteristic cluster size may be related to the
loss of plasticity, the power law behavior of the persistence
time may be associated to the memory generated by the
dynamics of the system.

The question we address here refers to how the learn-
ing process takes place dynamically and what is the cause
of the loss of plasticity. The slow dynamics observed in
this system presents analogies with the physical aging ef-
fects observed and reported on glass studies [14,15]: as
the system gets older (ages) there is a loss of plasticity
for structural or molecular relaxation and less changes are
observed during the relaxation time. The mechanisms un-
derlying the slow dynamics of glassy systems are the spa-
tial (or geometric) disorder related with the difficulty to
satisfy simultaneously all microscopic interactions, a char-
acteristic called frustration. Glasses and spin glasses ex-
hibit a rough energy landscape with many local minima
which is responsible for slowing down the relaxation to-
wards equilibrium. Their dynamics depends on the past
history of the sample and under small perturbations they
relax slowly. In our biologically motivated model the non-
local interactions are based on complementarity (both per-
fect and slightly defective matches) and reflect the acti-
vation and suppression mechanisms in the complementary
regions of the shape space. The analogue to frustration, in
the network, is generated by the inability of the system to
incorporate information and to satisfy the constraints of
the activation and suppression mechanisms. We show that
the CA dynamics gives rise to a large family of periodic
attractors which are very robust, and could be regarded
as the analogues of the minima in the glassy systems. The
loss of plasticity and aging effects will therefore be related
to the non-ergodicity in the phase space.

In this paper the dynamics of the immunological re-
sponses in the network model are investigated using the
common tools adopted in the study of glassy systems [15].
In particular we will focus on the relaxation of two-time
autocorrelations of the B-cell populations, the structure of
the attractors and effects of perturbations and immuniza-
tions. The paper is organized as follows: in Section 2 we
describe the model and the procedures adopted in order
to measure the correlations among different configurations



M. Copelli et al.: On the aging dynamics in an immune network model 121

of the system; in Section 3 we present and discuss the re-
sults obtained for small and large perturbations and in
Section 4 we present a summary, prospectives for future
work and some conclusions.

2 The model

The model under study here is a modified version [6–8] of
the model proposed by Stauffer and Weisbuch [16], which
in turn was inspired in a previous model proposed by
de Boer et al. [17] to describe the time evolution of the im-
mune repertoire. It is a deterministic window cellular au-
tomaton model based on the shape space formalism [18],
which describes the interactions of B-lymphocytes and an-
tibodies, and the main mechanism underlying these in-
teractions, which is pattern recognition (lock-key interac-
tion). The dynamics of the system is regulated by specific
interactions involving complementary molecular receptors
of the different clones. The memory about the relevant
antigens, presented to the system during its past history,
emerges from the dynamics of the system, rather than be-
ing stored in a static registry.

To each point of a d-dimensional discrete lattice we
associate a given receptor, which in turn will be de-
scribed by d-coordinates representing important physical-
chemical features of the receptor that differentiate one
from the other [18]. Since clones are classified according
to their molecular receptor, to each point �r of the discrete
shape space we associate a three-state automaton B(�r, t)
that will describe the concentration of its population over
the time: low (B(�r, t) = 0), intermediate (B(�r, t) = 1) and
high (B(�r, t) = 2).

The time evolution of the cellular automaton is based
in a non-local rule: population B(�r, t) at site �r is influ-
enced by the populations at site −�r (its mirror image or
complementary shape) and its nearest-neighbors (−�r+δ�r)
(representing defective lock-key interactions). The influ-
ence on the population at site �r due to its complementary
populations is described by the field h(�r, t):

h(�r, t) =
∑

�r ′∈(−�r+δ�r)

B(�r ′, t) (1)

where for a given �r the sum runs over the complementary
shape �r ′ = −�r and its nearest neighbors. Due to the finite
number of states of the population B, the maximum value
of the field h(�r) is hmax = 2(2d + 1). The updating rule is
based on a window of activation, which describes the dose
response function involved in B-cell activation [6,16,17].
There is a minimum field necessary to activate the pro-
liferation of the receptor populations (θ1), but for high
doses of activation (greater than θ2) the proliferation is
suppressed. The updating rule may be summarized as:

B(�r, t + 1) =
{

B(�r, t) + 1 if θ1 ≤ h(�r, t) ≤ θ2

B(�r, t) − 1 otherwise
(2)

but no change is made if it would lead to B = −1 or
B = 3. We define the densities of sites in state i at time t
as Bi(t) (i = 1, 2, 3).

The initial configurations are randomly generated ac-
cording to the following concentrations: B1(0) = B2(0) =
x/2, while the remaining Ld(1−x) sites are initiated with
B(�r, 0) = 0. This model may exhibit stable or chaotic
behaviors depending on the values of x, θ1 and θ2 − θ1.
However it is on the transition region between the two
behaviors that the model behaves like a multi-connected
network [6].

In order to simulate the immunization protocol per-
formed in the mice experiments we have followed the pro-
cedure which is described in reference [9] and summarized
below. We have adopted the scale of 5 time steps corre-
sponding to 1 day [9]. While the system evolves according
to the deterministic dynamics (Eq. (2)), small and large
perturbations can be produced, by setting the state of the
chosen sites at B(�r, t) = 2.

Small perturbations

The small perturbations account for the immunological
stimuli (noise) coming from the environment. The time
interval between two consecutive small perturbations is
a random number uniformly distributed between 1 and
100 time steps. Each perturbation corresponds to a ran-
dom number of damages (from 1 to 3) introduced at re-
gions of resting populations (B = 0) which are randomly
drawn (at every perturbation). The size of each damage
may also vary randomly from 1 to 3 (onion-like) concen-
tric layers around a central site (containing 7, 25 or 63
populations, respectively, in 3 dimensions).

Large perturbations

The large perturbations correspond to the immunization
protocol which starts at a predetermined age of the mice.
Like in the experiments, we stimulate the system period-
ically (every 35 steps � 1 week), and always in the same
region (which is initially chosen at random but kept un-
changed along the simulation). The damage size in this
case corresponds to six layers (377 populations) around
an specific site.

Previous results on this model have shown [9] that the
response to the immunizations presents a strong depen-
dence on the initial time (“age”) at which the periodic
protocol starts (fitting experimental data extremely well
for mice whose immunization protocol started at different
ages). This has led us to the conjecture that the dynami-
cal behavior of the system might be at least qualitatively
similar to that of some glassy systems, despite the non-
Hamiltonian nature of the CA dynamics.

One of the quantities commonly used in the study of
glassy systems is the two-time autocorrelation function
between the system configurations at two given times t
and tw. A common experiment in glassy systems consists
in preparing the system at a high temperature and sud-
denly making a quench to a low temperature. Then the
system is allowed to relax up to a waiting time tw, whose
configuration is recorded. As the system continues to relax
the autocorrelations between the instantaneous configura-
tions at time t > tw and that at time tw are computed.
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The waiting time tw is called the age of the system in the
context of glassy systems. The monitoring of the two-time
autocorrelations gives important insights on the relaxation
process. The dynamics, whether stationary or not, can be
readily recognized on the tw dependence of the autocorre-
lations, since in a stationary process two-time quantities
depend only on time differences. Consequently by plotting
correlations as a function of time difference t− tw for dif-
ferent waiting times it is possible to distinguish between
an essential out of equilibrium process from a stationary
one. The aging processes observed in glassy systems are
then related to the lack of temporal invariance [15].

Inspired on this approach, we will analyze the multi-
connected network dynamics by defining and analyzing
quantities analogous to the two-time autocorrelations for
the CA:

Ctot(t, tw) =
1
N

N∑

�r

δ (B(�r, tw), B(�r, t)) (3)

C22(t, tw) =
1

B2(tw)N

N∑

�r|B(�r,tw)=2

δ (B(�r, t), 2) , (4)

where N = Ld is the total number of populations in the
system. Ctot and C22 amount to normalized proximities
(using Hamming distance as a measure) and from now on
will be referred to simply as correlation functions. These
quantities will be analyzed for different protocols: with-
out any perturbation, with small perturbations (noise)
and with large perturbations (immunization protocol) in
order to differentiate the effects of the different kinds of
perturbations.

A complementary view of the long-term behavior of
the system can be obtained by looking at the attractors
to which the system evolves. In the present case it will
consist mainly of cycles, which will be reflected by the
periodicity of the correlations. For this purpose, we have
obtained the return maps of the consecutive maxima of the
correlation functions. Note that the period of the maxima
thus obtained does not correspond to the period of the
real system, which is at least twice as long [19].

3 Results

3.1 Without perturbations

In previous works [6,7,19] it has been shown that depend-
ing on the initial concentration x of active populations the
system may exhibit periodic or chaotic behavior. Systems
with low initial concentrations of active sites (x < xc)
evolve to either fixed points or orbits with short periods,
while for x > xc chaotic attractors appear. However, the
biologically relevant region is in the transition region be-
tween these two behaviors, where the system reaches one
of several periodic orbits (as will be seen below) with a
very long period and after a long transient. From now
on, all the results have been obtained using the same pa-
rameters adopted in reference [9]: d = 3, θ1 = hmax/3,
θ2 = 2hmax/3 and x = 0.26 (on the transition region).

Fig. 1. Return map for maxima of the total correlation func-
tion Ctot(t) for L = 50 and tw = 10 000 (single run).

Without any perturbation, the system evolves after
a transient time towards a cycle with a large period, as
shown in the return map of Figure 1. We have also var-
ied the waiting time from 10 to 100 000 (not shown). The
greater the waiting time, the closer to the attractor the
system is, which is revealed by larger values of the auto-
correlation functions. Once tw is larger than the transient,
the time series for Ctot(t, tw) (and also C22(t, tw)) will in-
clude unity (see Fig. 1) and will not change for larger
values of tw.

A typical result for the time evolution of the correla-
tion functions for tw = 100 is shown in Figure 2. The upper
panel corresponds to the time evolution of the densities B1

(intermediate concentrations) and B2 (high concentra-
tions), while the lower panel corresponds to Ctot(t, tw)
(open circles) and C22(t, tw) (filled circles). Notice that
while the concentrations relax to approximately constant
values in a short time, Ctot and C22 take much longer to
reach their attractors (note the logarithmic time scale).
In order to study how the system relaxes towards the at-
tractor it is more convenient to make use of C22, since it
measures the changes in the (more relevant) network of
activated populations. In the case shown in Figure 2 the
transient time needed to attain the attractor is O(104)
steps. It is necessary to point out, however, that this typ-
ical relaxation time is important only for the physical as-
pects of the dynamics. When mapped into the biological
problem, it would correspond to ∼ 5.5 years, which is
much longer than the average life time of the mice used in
the kind of experiment we simulated. Therefore the rele-
vant behavior, from the biological point of view, happens
to be in the transient of the model and not in its stationary
state, a result which is interesting on its own.

3.2 Random small perturbations

How does the behavior of the system change when ran-
dom small perturbations are produced on the parameter
region used to simulate the real experiments performed
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Fig. 2. Densities of intermediate and high concentrations vs. time (upper panel) and autocorrelations vs. t− tw for L = 50 and
tw = 100, without any perturbation.
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Fig. 3. Densities vs. time (upper panel) and correlations vs. t− tw for L = 50 and tw = 100; without perturbation (circles) and
with small perturbations (triangles).

with mice [9]? In order to investigate this issue, only the
small perturbations described in Section 2 were produced,
starting at time zero.

In Figure 3 we compare the time evolution of the den-
sities and correlation functions obtained for single runs for
the system without perturbations and with small random
perturbations. Note that in the case with small perturba-
tions the correlations initially follow those of the purely

deterministic system, showing only small differences. Af-
ter about 103 − 104 steps, however, they start decreasing
faster, indicating some sort of cumulative effect that drives
the system away from the region in phase space that it had
approached until tw. These effects are more easily noted
for C22. Moreover, the perturbations do not alter the be-
havior of the densities, as expected, since the number of
activated populations is kept approximately constant by



124 The European Physical Journal B

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 10 100 1000 10000 100000 1e+06

HD

t

Fig. 4. Normalized Hamming distance between two initially identical configurations subjected to different sequences of small
perturbations (three samples).

0

0.05

0.1

0.15

0.2

0.25

1 10 100 1000 10000 100000 1e+06

B
1,

 B
2

t

B1
B2

small B1
small B2

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000 1e+06

C
to

t

t-tw

Ctot
C22
small Ctot
small C22

Fig. 5. Densities vs. time (upper panel) and autocorrelations vs. t− tw for L = 100 and tw = 100 (the same conditions used in
Fig. 3); without perturbation (circles) and with small perturbations (triangles).

the self-regulatory mechanisms embedded in the dynami-
cal rules. The changes are observed only in the populations
that belong to the active network: in order to incorporate
new information (new populations), older ones are deacti-
vated. From the biological point of view, the realizations
of the perturbations (small and large) differ from one in-
dividual to another, building the identity of each individ-
ual. At the end of life each individual will have a different
history in terms of perturbations (antigen presentations)
translated into the configuration of the populations be-
longing to the active network. This is nicely illustrated
by Figure 4, where two initially identical copies of a sys-
tem undergo different realizations of the small perturba-
tions according to the protocol described in Section 2. The

Hamming distance between them grows on a long time
scale, revealing the mechanisms behind the behavior of
the correlations in Figure 3.

Returning to Figure 3, it is important to stress that
the changes observed in the concentrations for very long
times (upper panel) are due to finite size effects. They
are caused by the fact that all small perturbations are
produced on regions of resting populations. For a finite
system, after a long time all the possibilities will have
already been explored. Increasing the size of the system,
the changes on the densities disappear. This is shown in
Figure 5, where we repeat the simulations, under the same
conditions of Figure 3, for a larger system (L = 100).
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Fig. 6. Return map for maxima of total correlation function,
for L = 50, tw = 10 000, ∆t1 = 1000 and ∆t2 = 10 000.

In order to test out the robustness of these results,
we have varied the parameters controlling the protocol
of the random small perturbations. For instance, by in-
creasing the maximum number of different perturbations
from 3 to 6 at each presentation, and/or by changing
the maximum time interval between consecutive pertur-
bations from 100 to 10, we observe the same qualitative
behavior, with a faster decrease of the correlations — as
expected, since in both cases the noise has been increased.

What happens when the system’s autocorrelations de-
crease due to the small random perturbations after it has
reached a periodic attractor? Is the system driven to an-
other cycle? To answer this question we have studied the
stability of the cycles using the following procedure: we
let the system evolve without perturbation towards its at-
tractor for tw = 10 000 time steps, after which we perturb
the system with random small perturbations during a time
interval ∆t1. Then we turn off the perturbations and al-
low the system to relax during another time interval ∆t2
after which we obtain the return map of the correlations
in the following 200 time steps. If we produce only one
perturbation at tw (∆t1 = 1) the system remains in its
original cycle, yielding a return map similar to that of
Figure 1. Then, under the same conditions we repeat the
simulations adopting now ∆t1 = 1000 and ∆t2 = 10 000.
We observe in Figure 6 that the return map has changed
slightly when compared to Figure 1. In particular, it no
longer shows Ctot = 1 in the time series, but remains pe-
riodic, signaling that the system has shifted to a different
cycle due to the perturbations. Apparently the periods ob-
served in Figures 1 and 6 are the same. The distribution of
periods and transient times are currently under investiga-
tion, results will be published elsewhere. Figure 6 remains
the same by increasing ∆t2, which guarantees that the dif-
ferences with respect to Figure 1 are not a transient effect.

According to these results, the role the noise plays, if
allowed enough time to perturb the system significantly,

is to drive the system from one attractor to a nearby one,
which suggests that there is a family of periodic attrac-
tors which can be very close to one another in phase space.
These effects, however, take place on a time scale which is
longer [O(103 − 104) time steps] than the lifetime of the
mice [O(102 − 103) time steps]. The small perturbations
are therefore of little importance to the CA dynamics in
the biologically relevant time scale, as suggested in previ-
ous work [9].

The behavior of the autocorrelation functions in Fig-
ures 3 and 5 is reminiscent of what is observed in glassy
systems. Here the CA approaches a periodic attractor,
being thereafter deflected by the small perturbations. In
glassy systems, temperature drives the system from one lo-
cal minimum to another, preventing it from getting stuck
in local minima of the potential energy surface. As the
physical age of the system (characterized by the value of
the waiting time tw) grows, it finds itself exploring deeper
and deeper regions of a rough potential energy surface, dif-
fusing towards equilibrium [20]. Due to the roughness of
the potential energy, equilibrium is only attained on very
long time scales and relaxation is very slow. The older
the system is the more it gets confined to a restricted re-
gion of phase space and the time scales for relaxation get
longer and longer. Eventually, if we wait long enough, the
system equilibrates and the dynamics becomes stationary,
losing sensitivity to the waiting time. This picture of an
aging physical system is reminiscent to the loss of plastic-
ity for adaptation in a living organism as it gets older. In
either case, one observes a strong dependence on the wait-
ing time tw, evident when measuring two-time quantities
like autocorrelation functions and responses. Results for
the CA model are shown in Figure 7, where we see the
decay of autocorrelations for three systems with different
ages or waiting times. Note that the horizontal axis is the
time difference between the total time and the waiting
time. The three curves should collapse in the case that
the dynamical evolution is stationary.

3.3 Large immunizations

What is the role of the large perturbations on the dynam-
ics of the system? From previous studies we would expect
the large perturbations to accelerate the aging process:
while the random small perturbations would change the
route to the natural attractor of the system, the large ones
would reduce the transient time, a conjecture that would
explain the loss of plasticity of the older mice [9]. The
protocol adopted is the one described in Section 2, with
six-layer perturbations every 35 time steps, always at the
same sites.

In Figure 8 we compare the results obtained for the
unperturbed system and those of the system subjected
only to large immunizations starting at tw (note that the
densities are now also plotted as functions of t−tw). Some-
what surprisingly, the decrease of the correlations for large
perturbations is small, when compared to the case of the
small perturbations (compare with Fig. 3). In hindsight,
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tw = 100. Triangles: without perturbations of any kind. Circles: both large immunizations and small perturbations.

however, this can be understood because the large pertur-
bations are always produced in the same region. For very
long times the correlations will attain a stationary regime
whose active populations contain at least part of the re-
gion involved in the immunizations [9]. In other words,
the driving produced by the large periodic perturbations
is of a completely different nature than that of the small
perturbations. The large perturbations seem to play a se-

lective role: the cycles that the system can reach are re-
stricted to those that contain at least part of the popu-
lations incorporated during the immunization. According
to this picture, the aging effects observed in reference [9]
could be simply related to the exploration of the phase
space: the older the system the less possibilities of choos-
ing new cycles it would have. In Section 4 we discuss this
issue further.
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large immunizations only. Circles: both large immunizations and small perturbations.

In Figure 9 we compare the time evolution of the den-
sities B1 and B2 and the autocorrelation functions for the
system subjected only to large perturbations and for the
system with both small perturbations and large immuniza-
tions. The results, as expected, confirm the dominance of
the small perturbations, over the large ones, in driving the
system faster to a different attractor. The increase of the
densities around t ∼ 104 for L = 50 corresponds to the
same finite size effects occurring in Figure 3, being asso-
ciated to the active populations which have been incor-
porated into the network by means of the immunization
protocol.

4 Concluding remarks

We have analyzed the dynamics of a cellular automata
model for the B-cell repertoire which has reproduced ex-
perimental results of immunizations on mice. Our analyses
provide a broader context in which memory and plasticity
take place, as discussed in reference [9].

Defining quantities analogous to the autocorrelation
functions used in glassy systems, we have shown that the
biologically relevant phenomena takes place in the tran-
sient regime of the model. The dependence of these func-
tions on both t and tw (as opposed to the difference t− tw
only) is reminiscent of the “aging” behavior observed in
glassy systems, despite the fact that the underlying dy-
namics of both systems are controlled by completely dif-
ferent mechanisms.

Starting from different initial conditions the determin-
istic dynamics takes the system towards a family of long-
period attractors. When subjected to random small per-
turbations (Fig. 4), the system is driven towards a new
attractor of the family, revealing that most of the noise
is assimilated. However, only part of the large perturba-
tions is incorporated, due to the mechanisms of activation
and suppression, leading to a saturation of the learning
process [9].

From the biological point of view, the history of the
mouse (sample) will be written by the different antigen
presentations (random perturbations), starting from its
“birth” (initial condition). Since the system is large but
finite there is a maximum amount of information it may
incorporate. The closer it is to its “destiny” attractor, the
less information it is able to learn, since the deeper it
already is in a given basin of attraction. Therefore the
biological aging corroborated by the experimental results
may be simply a consequence of this dynamical feature.

From the results obtained up to now there are evi-
dences that the purely deterministic dynamics is there-
fore non-ergodic. Despite their large number, however,
the family of periodic attractors occupy only a fraction of
the phase space. Evidences of this compression in phase
space has been obtained in the following computer exper-
iment: selecting randomly two initial configurations (with
the same initial concentration), we measured the Ham-
ming distance between them as a function of time as both
systems evolve without any perturbation. In Figure 10 we
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Fig. 10. Hamming distance between 100 pairs of random configurations as a function of time (average and standard deviation).
Inset: evolution for t > 100 shows that the HD attains a stationary regime for sufficiently long times (standard deviation not
shown).

show the evolution of the average HD for 100 pairs (er-
ror bars are standard deviations). During the first 10 time
steps the HD decreases very rapidly, but for t > 100 we
observe a quasi-stationary regime, reflecting the slow driv-
ing to the attractors (see inset). Note that this behavior is
somewhat similar to that of the autocorrelation functions
for small tw.

Still focusing on the evidence of phase space compres-
sion, in Figure 11 we present the distribution of HD sam-
pled from 500(500 − 1)/2 pairs, for two consecutive time
steps (t = 4000 and t = 4001). The distributions can be
well described by a Gaussian, with a width that remains
approximately constant (even for long times). Notice that
the average value for t = 4001 is slightly larger than for
t = 4000, reflecting the oscillatory behavior of the average
HD as the pair of samples reaches their periodic attractors.
It should be noted that, for large N , the Central Limit
Theorem assures that randomly chosen initial configura-
tions (with the same x) naturally give rise to a Gaussian
distribution of the HD between any two of them, at time
zero. Interestingly, the CA dynamics does not change the
shape of the distribution, its only effect being to essen-
tially shift the Gaussian towards lower mean values, on a
long time scale. The spatio-temporal structure of the cy-
cles, as well as their transients and basins of attraction,
should be the object of further study and will be published
elsewhere.
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